Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.784
Filtrar
1.
Front Nutr ; 11: 1335831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562487

RESUMO

Background: Despite the rapid increase in the global prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), there are no approved therapeutic drugs for MAFLD yet. Nutrient supplementation might mitigate the risk of MAFLD. It is more typical for individuals to consume multiple nutrients simultaneously. However, the studies exploring the combined effects of multiple nutrients on MAFLD are limited. This study aimed to investigate the relationship between both individual nutrients and their combined influence on the risk of MAFLD. Methods: Data were obtained from National Health and Nutrition Examination Survey (NHANES), and 18 types of nutrients were considered in this study. Logistic regression analysis was performed to evaluate the correlation between single nutrients and the risk of MAFLD. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to pinpoint the most relevant nutrient associated with the risk of MAFLD. Subsequently, both Weighted Quantile Sum (WQS) regression and Quantile g-computation (Qgcomp) were used to assess the combined effects of multiple nutrients on the risk of MAFLD. Results: A total of 3,069 participants were included in this study. LASSO regression analysis showed that Se, α-tocopherol, and γ-tocopherol exhibited a positive association with the risk of MAFLD. In contrast, the serum levels of Co, P, α-cryptoxanthin, LZ, and trans-ß-carotene were inversely associated with the prevalence of MAFLD. When Se and two types of vitamin E were excluded, the WQS index showed a significant inverse relationship between the remaining 15 nutrients and the risk of MAFLD; α-cryptoxanthin showed the most substantial contribution. Similarly, Qgcomp suggested that the combined effects of these 15 nutrients were associated with a lower risk of MAFLD, with α-cryptoxanthin possessing the most significant negative weights. Conclusion: This study suggested that the complex nutrients with either a low proportion of Se, α-tocopherol, and γ-tocopherol or without them should be recommended for patients with MAFLD to reduce its risk.

2.
Fish Shellfish Immunol ; : 109534, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38575040

RESUMO

Zinc is one of the essential microelements for the metabolism of animals. Zinc nanoparticles may have higher bioavailability due to their low specific surface area, facilitating absorption by fish. The present study aimed to evaluate the effects of supplementation with different zinc-based products on the growth and health of Nile tilapia Oreochromis niloticus. Zinc, in different sizes (nanoparticles or bulk) and forms (inorganic or organic), were used as a supplement in the tilapia diet at a dose of 15 mg kg feed-1 for 60 days. At the end of the feeding trial, production performance, hemato-immunological parameters, activity of antioxidant system enzymes, exposure to Streptococcus agalactiae and zinc concentration in the muscle were examined. After the bacterial challenge, the mean corpuscular hemoglobin concentration (MCHC) significantly increased in the fish treated with organic zinc, inorganic nano zinc, and organic nano zinc, while in the control group (inorganic zinc), MCHC remained unchanged. Regarding defense cells, dietary inorganic nano zinc increased the number of basophils (1.50 ±â€¯1.10) compared to organic zinc (0.80 ±â€¯0.90). Lymphocyte count increased after the challenge only in the organic zinc treatments (bulk and nanoparticles). Neutrophils decreased in the control (inorganic zinc) (2.20 ±â€¯1.70) and inorganic nano zinc (2.60 ±â€¯2.70) treatments after the challenge. When compared before and after the bacterial challenge, the plasma antimicrobial titer significantly increased after the bacterial challenge in all treatments. No significant differences were observed for total proteins, enzymes (SOD and CAT), cumulative survival and zinc deposition on fillet. In conclusion, organic zinc in nanoparticles or bulk size increased Nile tilapia innate defense during bacterial infection. However, the other parameters evaluated were not affected by zinc particle size or form (organic or inorganic), indicating that further evaluations should be conducted with organic zinc in nanoparticles or bulk size in the tilapia diet.

3.
Animal ; : 101125, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38575402

RESUMO

Some of the biggest changes in mineral nutrition for pigs that have occurred due to recent research were caused by the understanding that there is a loss of endogenous Ca and P into the intestinal tract of pigs. This resulted in development of the concept of formulating diets based on standardized total tract digestibility (STTD) rather than apparent total tract digestibility because the values for STTD of these minerals are additive in mixed diets. There are, however, no recent summaries of research on digestibility and requirements of macro- and microminerals and vitamin D for pigs. Therefore, the objective of this review was to summarize selected results of research conducted over the last few decades to determine the digestibility and requirements of some minerals and vitamin D fed to sows and growing pigs. Benefits of microbial phytase in terms of increasing the digestibility of most minerals have been demonstrated. Negative effects on the growth performance of pigs of over-feeding Ca have also been demonstrated, and frequent analysis of Ca in complete diets and raw materials is, therefore, recommended. There is no evidence that current requirements for vitamin D for weanling or growing-finishing pigs are not accurate, but it is possible that gestating and lactating sows need more vitamin D than currently recommended. Vitamin D analogs and metabolites such as 1(OH)D3 and 25(OH)D3 have beneficial effects when added to diets for sows in combination with vitamin D3. Recent research on requirements for macrominerals other than Ca and P is scarce, but it is possible that Mg in diets containing low levels of soybean meal is marginal. Some of the chelated microminerals have increased digestibility compared with sulfate forms, and hydroxylated forms of Cu and Zn appear to be superior to sulfate or oxide forms. Likewise, dicopper oxide and Cu methionine hydroxy analog have a greater positive effect on the growth performance of growing pigs than copper sulfate. The requirement for Mn may need to be increased whereas there appears to be no benefits of providing Fe above current requirements. In conclusion, diets for pigs should be formulated based on values for STTD of Ca and P and there are negative effects of providing excess Ca in diets. It is possible vitamin D analogs and metabolites offer benefits over vitamin D3 in diets for sows. Likewise, chelated forms of microminerals or chemical forms of minerals other than sulfates or oxides may result in improved pig performance.

4.
Chemosphere ; 356: 141878, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582172

RESUMO

In this study, a sulfur-modified magnetic hydrochar was synthesized by grafting thiol-containing groups onto the sludge-derived hydrochar. The modified hydrochar exhibited effective adsorption of Cu2+, Pb2+, Zn2+, and Cd2+ over a wide pH range and in the presence of coexisting ions, and showed almost no secondary leaching in three acidic solutions. In the mult-metal ion system, the modified hydrochar exhibited maximum adsorption capacities were 39.38, 105.74, 26.53, and 38.11 mg g-1 for Cu2+, Pb2+, Zn2+, and Cd2+, respectively. However, the binding capacity and adsorption amount of modified hydrochar for metal ions were lower in the mult-metal ion system compared to the unit-metal ion system. Notably, Pb2+ showed a strong inhibitory effect on the adsorption of other heavy metal ions by modified hydrochar due to strong competition for xanthate functional groups. The Pb2+ occupied the xanthate and native functional groups (-OH, -NH2, and Fe-O etc.), leaving only a small amount of adsorption sites for Cu2+, Zn2+ and Cd2+. Simulation results further supported these findings, indicating that Pb2+ had the highest density profiles near the four functional groups, and the density profiles of the four heavy metals near the xanthate functional groups were greater compared to the other three functional groups. Furthermore, the SEM-EDS, TOF-SIMI, and XPS results indicated that modified hydrochar achieved excellent mineral binding mainly through electrostatic interaction, ion exchange, and chelation. Overall, these results highlight the sulfur-modified magnetic hydrochar as a highly efficient adsorbent for heavy metals in environmental applications.

5.
Mar Pollut Bull ; 202: 116325, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569303

RESUMO

This study assesses macrominerals (Na, K, Ca, Mg, P) and heavy metals (As, Cd, Cr, Cu, Ni, Pb, Se, Sn, Mn, Co, Fe, and Zn) content of deep-sea fish bycatch in the Arabian Sea, offering insights into their nutritional value, toxicant levels and health implications. Variations in Ca, K, P, Mg, and Na levels across species highlight mineral diversity. Setarches guentheri has the highest Ca (7716 mg/kg ww), K (2030.5 mg/kg ww), and P (13,180 mg/kg ww) concentrations. Dactyloptena orientalis exceeds the Cd limit (0.1284 mg/kg ww). Elevated Se levels in fishes were noted, with Dactyloptena orientalis (0.8607 mg/kg ww), Satyrichthys laticeps (0.7303 mg/kg ww), and Snyderina guentheri (0.6193 mg/kg ww). Fish like Pterygotrigla hemisticta contains high Zn (32 mg/kg ww), meeting Recommended Dietary Allowance limits. Deep-sea fish have safe heavy metal levels, but Cd, Se, and Zn exceed acceptable limits. It has been concluded that the consumption of fish species will not pose a potential health risk to humans.

6.
Front Vet Sci ; 11: 1366314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577544

RESUMO

The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).

7.
J Dairy Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580150

RESUMO

The present study was conducted to assess the individual or combined effects of feeding dietary fat (whole-cracked rapeseed), nitrate, and 3-nitrooxypropanol (3-NOP) on protein profile, mineral composition, B vitamins, and nitrate residues in milk from dairy cows. Forty-eight Danish Holstein cows used in an 8 × 8 incomplete Latin square design were fed 8 factorially arranged diets ((30 or 63 g crude fat/kg DM) × (0 or 10 g nitrate/kg DM) × (0 or 80 mg 3-NOP/kg DM)) over 6 periods of 21 d each. In each period, milk samples were collected from individual cows during the third week by pooling milk obtained from 4 consecutive milkings, and analyzed for protein profile including protein modifications, mineral composition, riboflavin, cobalamin, and presence of nitrate residues. Fat supplementation led to an increase in the phosphorylation degree of αS1-CN by 8.5% due to a decreased relative proportion of αS1-CN 8P and an increased relative proportion of αS1-CN 9P and further to a decrease in the relative proportion of αS2-CN by 2.4%. Additionally, fat supplementation decreased the relative proportions of glycosylated and unglycosylated forms of κ-CN, consequently leading to a 3.6% decrease in total κ-CN. In skim milk, K, Ca, P, and Mg concentrations were altered by individual use of fat, nitrate, and 3-NOP. Feeding nitrate resulted in a 5.4% increase in riboflavin concentration in milk while supplementing 3-NOP increased cobalamin concentration in milk by 21.1%. The nitrate concentration in milk was increased upon feeding nitrate however, this increased concentration was well below the maximum permissible limit of nitrate in milk (<50 mg/L). In conclusion, no major changes were observed in milk protein, and mineral compositions by feeding fat, nitrate, and 3-NOP to dairy cows while the increased riboflavin and cobalamin by nitrate and 3-NOP, respectively, could be of beneficial nutritional value for milk consumers.

8.
Plants (Basel) ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611566

RESUMO

Cereals, as the world's most consumed food, face challenges related to nutrient quality due to climate change and increased production impacting soil health. In this study, we investigated the vitamin and mineral content, polyphenols, and antioxidant activity in cereals from Western Romania, analyzing whole and hulled wheat, rye, oat, and soybeans before and after heat treatment. Samples from 2022 crops were processed into dough and subjected to 220 °C for 30 min. The results reveal that, despite efforts to optimize nutrient content, cereals, particularly after heat processing, exhibited lower vitamin and mineral levels than the recommended daily intake. The decrease in polyphenols and antioxidant capacity was notable, with rye flour experiencing the largest decline (15%). Mineral analysis showed copper levels in decorticated wheat decreased by 82.5%, while iron in rye decreased by 5.63%. Soy flour consistently displayed the highest calcium, magnesium, and potassium levels, whereas oat flour had the highest zinc and copper levels before and after heat processing. The study highlights the concerningly low vitamins and minerals contents in cereals, as well as in the final products reaching consumers in the Western part of Romania, and contributes to the assessment of measures that are meant to improve the contents of these minerals.

9.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613041

RESUMO

The role of minerals in female fertility, particularly in relation to the menstrual cycle, presents a complex area of study that underscores the interplay between nutrition and reproductive health. This narrative review aims to elucidate the impacts of minerals on key aspects of the reproductive system: hormonal regulation, ovarian function and ovulation, endometrial health, and oxidative stress. Despite the attention given to specific micronutrients in relation to reproductive disorders, there is a noticeable absence of a comprehensive review focusing on the impact of minerals throughout the menstrual cycle on female fertility. This narrative review aims to address this gap by examining the influence of minerals on reproductive health. Each mineral's contribution is explored in detail to provide a clearer picture of its importance in supporting female fertility. This comprehensive analysis not only enhances our knowledge of reproductive health but also offers clinicians valuable insights into potential therapeutic strategies and the recommended intake of minerals to promote female reproductive well-being, considering the menstrual cycle. This review stands as the first to offer such a detailed examination of minerals in the context of the menstrual cycle, aiming to elevate the understanding of their critical role in female fertility and reproductive health.


Assuntos
Ciclo Menstrual , Ovulação , Feminino , Humanos , Reprodução , Minerais , Conhecimento
10.
Sci Rep ; 14(1): 8590, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615144

RESUMO

Hypertension (HPT) is the leading modifiable risk factor for cardiovascular diseases and premature death worldwide. Currently, attention is given to various dietary approaches with a special focus on the role of micronutrient intake in the regulation of blood pressure. This study aims to measure the dietary intake of selected minerals among Malaysian adults and its association with HPT. This cross-sectional study involved 10,031 participants from the Prospective Urban and Rural Epidemiological study conducted in Malaysia. Participants were grouped into HPT if they reported having been diagnosed with high blood pressure [average systolic blood pressure (SBP)/average diastolic blood pressure (DBP) ≥ 140/90 mm Hg]. A validated food frequency questionnaire (FFQ) was used to measure participants' habitual dietary intake. The dietary mineral intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc was measured. The chi-square test was used to assess differences in socio-demographic factors between HPT and non-HPT groups, while the Mann-Whitney U test was used to assess differences in dietary mineral intake between the groups. The participants' average dietary intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, selenium, sodium, and zinc was 591.0 mg/day, 3.8 mg/day, 27.1 mg/day, 32.4 mg/day, 0.4 mg/day, 1431.1 mg/day, 2.3 g/day, 27.1 µg/day, 4526.7 mg/day and 1.5 mg/day, respectively. The intake was significantly lower among those with HPT than those without HPT except for calcium and manganese. Continuous education and intervention should be focused on decreasing sodium intake and increasing potassium, magnesium, manganese, zinc, and calcium intake for the general Malaysian population, particularly for the HPT patients.


Assuntos
Hipertensão , Selênio , Adulto , Humanos , Estudos Transversais , Cálcio , Manganês , Cobre , Magnésio , Estudos Prospectivos , Hipertensão/epidemiologia , Cálcio da Dieta , Ferro , Zinco , Sódio , Fósforo , Potássio
11.
Heliyon ; 10(7): e29117, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623221

RESUMO

The potential of Aspergillus niger, to enhance non-exchangeable potassium (K+) release from mineral structures were investigated as a cost-effective and environmentally friendly alternative to traditional chemical fertilizers. Optimizing the culture medium for maximum K+ release, alongside identifying potential mechanisms of action of the A. niger including the production of various organic acids and pH reduction in the minerals feldspar and phlogopite, were among the primary objectives of the present study. K+ dissolution from feldspar and phlogopite in the presence of Aspergillus niger were examined through a two-step experiment; impact of different carbon sources (glucose, sucrose, and fructose) on K+ release using the Plackett-Burman design (PBD) with 12 experimental runs and effect of other independent variables including pH (ranging from 5 to 10), carbon concentration (3-12.3 g l-1), and incubation time (5-18 days) on K+ release using the central composite design (CCD). Our results indicated that the PBD demonstrated a strong predictive capacity (RMSE = 0.012-0.018 g l-1 and R2 = 0.85-0.89) for K+ release. According to the CCD model, pH exerted a significant positive influence on increasing soluble K+ release (P < 0.001). The highest levels of K+ release (157.8 and 175.3 mg l-1 in feldspar and phlogopite, respectively) were observed at the central levels (0) of time and carbon source, and at the +α level (+1.68) of pH. Furthermore, based on the CCD model, the optimal conditions for achieving high K+ release from feldspar and phlogopite in a medium were pHs of 10.36 and 10.31, sucrose concentrations of 11.23 and 11.32 g l-1, and incubation times of 15 and 18 days, respectively. The determination coefficients of the CCD model indicated that 89.5% and 92.6% of the changes in soluble K+ for feldspar and phlogopite, could be explained by this model, respectively. In the current study, the production of organic acids and the resulting pH reduction, along with the reduction in mineral particle size in feldspar and phlogopite, were identified as potential mechanisms influencing the enhancement of potassium solubility. The predominant acids in both feldspar and phlogopite were lactic acid (70.9 and 69.15 mg l-1) and citric acid (40.48 and 22.93 mg l-1), although the production levels of organic acids differed in the two minerals. Overall, our findings highlight the potential of A. niger to proficiently release non-exchangeable potassium from mineral matrices, indicating its promising potential in agricultural applications.

12.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588505

RESUMO

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Assuntos
Argila , Metais Terras Raras , Minerais , Adsorção , Metais Terras Raras/química , Argila/química , Minerais/química , Concentração de Íons de Hidrogênio , Silicatos de Alumínio/química
13.
ACS Appl Mater Interfaces ; 16(15): 19391-19410, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591172

RESUMO

Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.


Assuntos
Bentonita , Nanopartículas , Criança , Humanos , Idoso , Qualidade de Vida , Regeneração Óssea , Íons
14.
Water Res ; 256: 121607, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38640568

RESUMO

This work investigates the physicochemical characteristics of grease-trap wastewater discharged from a large community market. It proposes potential mechanisms of fat, oil, and grease (FOG) solid formation, separation, and accumulation inside grease traps. Sixty-four samples, i.e., the floated scum, suspended solid-liquid wastewater, and settled sludge, were collected from the grease-trap inlet and outlet chambers. A lower pH of 5-6 at 25-29 °C inside the grease trap than those reported under the sewer conditions (pH 6-7) was revealed. A significant difference in solid and dissolved constituents was also discovered between the inlet and outlet chambers, indicating that the baffle wall could affect the separation mechanism. The sludge samples had 1.5 times higher total solids (TS) than the scum samples, i.e., 0.225 vs. 0.149 g g-1 TS, revealing that the sludge amount impacted more significantly the grease trap capacity and operation and maintenance. In contrast, the scum samples had 1.4 times higher volatile solids (VS) than the sludge samples, i.e., 0.134 vs. 0.096 g g-1 VS, matching with the 64.2 vs. 29.7% of carbon content from CHN analysis. About 2/3 of the free fatty acids (FFAs) with palmitic acids were the primary saturated FFAs, while the remaining 1/3 of unsaturated FFAs were found in the solid and liquid samples. Although up to 0.511 g g-1 FOG can be extracted from the scum samples, none from the sludge samples. More diverse minerals/metals other than Na, Cl, and Ca were found in the sludge samples than in the scum samples. Grease-trap FOG solids and open drain samples exhibited similar physicochemical properties to those reported in the literature. Four potential mechanisms (crystallization, emulsification, saponification, and baffling) were presented. This work offers insights into the physicochemical properties of grease-trap wastewater that can help explore its FOG solid formation, separation, and accumulation mechanisms inside a grease trap.

15.
Environ Pollut ; : 124014, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642792

RESUMO

Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2=0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.

16.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611518

RESUMO

Silybum marianum and Silybum eburneum are wild edible Mediterranean plants used in the human diet. This study presents the initial findings on the phytochemical characterization of Tunisian S. marianum and S. eburneum organs. It examined their mineral, sugar, organic acid, polyphenolic, and seed storage protein contents, as well as their antioxidant potential. In S. marianum, stems had high sodium and potassium contents, while the immature and mature seeds were rich in calcium and magnesium. However, S. eburneum had high potassium levels in stems and high sodium and calcium levels in the flowers. S. marianum showed substantial fructose variation among its organs. Conversely, S. eburneum exhibited significant heterogeneity in glucose, sucrose, and maltose levels across its organs, with maltose exclusively detected in the immature seeds. A notable organ-dependent distribution of organic acids was observed among the two species. Higher levels of phenolic contents were detected in both mature and immature seeds in both species compared to the other plant parts. The seeds possessed higher antioxidant activities than other plant organs. In both S. marianum and S. eburneum seeds, albumins and globulins were the predominant protein fractions. This study brings evidence supporting the important potential of Silybum organs as sources of nutrients with antioxidant properties for producing functional food.

17.
Toxicol Ind Health ; : 7482337241246924, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619498

RESUMO

It has long been recognized that amphibole minerals, such as cleavage fragments of tremolite and anthophyllite, may exist in some talc deposits. We reviewed the current state of the science regarding the factors influencing mesotheliogenic potency of cleavage fragments, with emphasis on those that may co-occur in talc deposits, including dimensional and structural characteristics, animal toxicology, and the most well-studied cohort exposed to talc-associated cleavage fragments. Based on our review, multiple lines of scientific evidence demonstrate that inhaled cleavage fragments associated with talc do not pose a mesothelioma hazard.

18.
J Vet Intern Med ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613433

RESUMO

BACKGROUND: Copper (Cu), zinc (Zn), and the copper/zinc ratio (Cu/Zn), which have been studied in gastrointestinal disorders of humans, may facilitate disease prognosis. OBJECTIVE: Evaluate the predictive potential of Cu, Zn, cobalamin, and serum amyloid A (SAA) as prognostic indicators in cats with feline panleukopenia (FPV) on admission. ANIMALS: Client-owned cats diagnosed with FPV and controls. METHODS: Serum Cu and Zn concentrations were assessed using the spectrophotometric method and serum concentrations of SAA and cobalamin were measured by chemiluminescent immunoassay. RESULTS: On admission, survivor cats with FPV had significantly higher serum Cu and SAA concentrations and Cu/Zn ratios and significantly lower serum Zn and cobalamin concentrations than controls. Furthermore, non-survivor cats with FPV had significantly higher serum Cu and SAA concentrations and Cu/Zn ratios and significantly lower cobalamin concentrations than survivors and controls. Prognostic thresholds were calculated, with positive predictive value (PPV) for survival of 90% for Cu (≥120.3 µg/dL), 90% for Cu/Zn (≥1.34), 90% for cobalamin (≤430.4 pg/mL), and 90% for SAA (≥0.85 mg/L). CONCLUSIONS AND CLINICAL IMPORTANCE: Cu (0.93 area under curve [AUC]), Cu/Zn (0.95 AUC), cobalamin (0.98 AUC), and SAA (0.98 AUC) were excellent biomarkers for predicting prognosis in cats with FPV. Their effectiveness, as assessed by sensitivity (100%), specificity (80%), AUC (0.98), and PPV (90%) from receiver operating characteristic analysis, emphasizes the performance of cobalamin and SAA.

19.
J Anim Sci ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613515

RESUMO

Angus-crossbred steers (n = 400; 369.7 ± 7.6 kg) were used to determine the influence of trace mineral (TM) source and chromium propionate (Cr Prop) supplementation on performance, carcass characteristics, and ruminal and plasma variables in finishing steers. Steers were blocked by body weight (BW) and randomly assigned within block to treatments in a 2 x 2 factorial arrangement, with factors being: 1) TM source (STM or HTM) and 2) Cr supplementation (0 or 0.25 mg Cr/kg DM, -Cr or +Cr, respectively). Treatments consisted of the addition of: 1) sulfate TM (STM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), 2) STM and 0.25 mg Cr/kg DM from Cr Prop, 3) hydroxychloride TM (HTM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), and 4) HTM and 0.25 mg Cr/kg DM from Cr Prop. Each treatment consisted of 10 replicate pens with 10 steers per pen. Body weights were obtained on consecutive days at the initiation and termination of the 154-d study. Steers were fed a steam-flaked corn-based finishing diet. Ractopamine hydrochloride was fed for the last 31 d of the study. Ruminal fluid and blood samples were obtained from one steer per pen on d 28 and 84 for ruminal volatile fatty acids (VFA) and plasma TM and glucose analysis. Steers were slaughtered at the end of the study and individual carcass data were collected. No Cr x TM source interactions were detected. Steers supplemented with HTM had greater (P ˂ 0.04) hot carcass weight (HCW), dressing percentage (DP), longissimus muscle (LM) area, and USDA yield grade (YG), and tended (P ˂ 0.12) to have greater average daily gain (ADG) than those receiving STM. Average daily gain, gain:feed, dressing percentage, and longissimus muscle area were greater (P ˂ 0.04) for +Cr steers compared to - Cr steers. Hot carcass weight tended (P ˂ 0.06) to be greater for +Cr steers. Ruminal acetate concentrations at 28 d were lesser (P ˂ 0.01) for HTM vs. STM steers, and greater (P ˂ 0.04) for +Cr steers compared to - Cr steers. Plasma concentrations of Zn, Cu, and Mn were not affected by TM source or Cr supplementation. Steers supplemented with Cr had greater (P ˂ 0.05) plasma glucose concentrations than - Cr steers at 28 but not at 84 d. Results of this study indicate replacing STM with HTM improved carcass characteristics in finishing steers, and Cr Prop supplementation improved steer performance and carcass characteristics.

20.
Sci Total Environ ; 928: 172364, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614347

RESUMO

Determining whether and to what extent the relative abundance of heavy minerals in original detrital assemblage has been modified by mechanical transport is beneficial for understanding regional historical climate changes and acquiring modern sediment provenance information. Utilizing the frequency of surface mechanical optical textures of heavy minerals may be an effective approach to address this question. However, the connection between the frequency surface mechanical optical textures of heavy minerals and the variations in the relative abundance of these minerals remains uncertain. In this study, 12 modern aeolian sand samples were collected from the Badain Jaran Desert in hyper arid region of northwestern China, characterized by weak weathering to analyze their relative contents of five major heavy minerals. Then, 3796 transparent heavy mineral grains were photographed under the parallel light of a polarizing microscope, and the frequency of 13 surface mechanical optical textures were calculated. The results reveal that the variations in the relative abundance of heavy minerals are substantially influenced by mechanical transport. The decrease in the relative abundance of heavy minerals with weak mechanical stability primarily attributed to mechanical collision. Conversely, the variations in the relative abundance of heavy minerals with strong mechanical stability are primarily influenced by mechanical abrasion. Therefore, mechanical transport impact on the relative abundance of heavy minerals in regions with weak chemical weathering. Establishing heavy mineral characteristic indices for provenance studies using the relative abundance of mechanically unstable minerals may not directly indicate transport distance but rather the strength of wind forces, which have significant potential in palaeo wind regime studies. This study expands the research field of sediment surface micromorphology and has potential applications in inferring past climate changes and determining modern sediment provenance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA